Home / Electrical Circuits (page 2)

Electrical Circuits

First Order System Transient Response

First Order System Transient Response

First-order systems are important in all engineering disciplines and occur frequently in nature. Such systems are characterized by a single state variable, where the system energy is proportional to the square of the state variable. That energy is dissipated by the system such that the rate of change of the …

Read More »

Maximum Power Transfer Theorem

Maximum Power Transfer Theorem

Maximum Power Transfer Theorem Definition Maximum power transfer theorem states that maximum power output is obtained when the load resistance Ro is equal to Thevenin resistance RT as seen from load Terminals. The reduction of any linear resistive circuit to its Thevenin or Norton equivalent form is a very convenient conceptualization, …

Read More »

Superposition Theorem

Principle of Superposition theorem

The principle of superposition is a valid and frequently used, analytic tool for any linear circuit. It is also a powerful conceptual aid for understanding the behavior of circuits with multiple sources. For any linear circuit, the principle of superposition states that each independent source contributes to each voltage and …

Read More »

Node Voltage Method

Node Voltage Method

Node voltage analysis is the most general method for the analysis of electric circuits. Its application to linear resistive circuits is illustrated in this article. The node voltage method is based on defining the voltage at each node as an independent variable. One of the nodes is freely chosen as …

Read More »

Mesh Current Analysis

Mesh Current Analysis | Steps | Solved Example

Another method of circuit analysis employs mesh currents. The objective, similar to that of node analysis, is to generate one independent equation for each independent variable in a circuit. In this method, each mesh in a circuit is assigned a mesh current variable and Kirchhoff’s voltage law (KVL) is applied …

Read More »

Characteristics of Network and Electric Circuit

Characteristics of Network and Electric Circuit

The Oxford online dictionary defines a network as “a group or system of interconnected people or things”. In an electric network, elements, such as resistors, are connected by wires. The same dictionary defines a circuit as “a complete and closed path around which a circulating electric current can flow” or …

Read More »

Difference between Conductor Semiconductor and Insulator

Difference between Conductor Semiconductor and Insulator

This article covers the key differences between Conductor, Semiconductor, and Insulator on the basis of Conductivity, Resistivity, Forbidden Gap, Conduction, Band Structure, Current Flow, Band Overlap, 0 Kelvin Behavior, and Examples. The following table covers the key Differences between Conductor Semiconductor and Insulator. You May Also Read: Difference between Electric and …

Read More »

Nodal Analysis with Solved Examples

nodal analysis

Nodal analysis is a circuit-analysis format that combines Kirchhoff’s current- law equations with the source transformation. Converting all voltage sources to equivalent constant-current sources allows us to standardize the way we write the Kirchhoff’s current-law equations. For nodal analysis, we consider source currents to flow into a node. If the …

Read More »

Mesh Current Analysis with Solved Problems

Mesh Current Analysis is a technique that simplifies and speeds up writing the simultaneous equations for solving various resistance networks. The format for mesh equations is straightforward, but it cannot handle some of the networks that we can solve with the loop procedure. A mesh is a closed loop that …

Read More »

Source Transformation Example Problems with Solutions

source-transformation-1

Source transformation is a circuit analysis technique in which we convert voltage source in series with resistor into a current source in parallel with the resistor and vice versa. For a given constant-voltage source, Rint in the equivalent constant-current source has the same value but appears in parallel with the ideal current source, …

Read More »

Parallel RLC Circuit: Analysis & Example Problems

parallel-rlc-circuit

In parallel RLC circuits the three basic components are in parallel with each other, and, therefore, all are subject to the same voltage. The current for each branch, however, depends on the impedance of the branch and can be individually determined by employing Ohm’s law. For a parallel RLC circuit, the voltage is common …

Read More »

Capacitors in AC Circuits

Capacitors in AC Circuits

When a capacitor is subject to a voltage across its terminals, it starts charging until its charge becomes at the level of the applied voltage. During the time that charging takes place a current flows in the circuit (wires connecting the capacitor to the power source). This current is due to …

Read More »